Bondar-Clegg, Inc. 12980 West Cedar Dr. Lakewood, Colorado 80228 (303) 989-1404 | 100 | | | | | |-----|---|---|---|--| | | | | | | | | BROHM MINING CORP. MR, JIM BARRON P.O. BOX 485 DEADWOOD, SD 57732 | | | | | + | ţ. | + | + | REPORT: 098-1665 (COMPLETE) | REFERENCE INFO: NONE LISTED | |---|---| | CLIENT: BROHM MINING CORP. PROJECT: MONE LISTED | SUBMITTED BY: J. BARRON DATE PRINTED: 3-JAN-89 | | ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACT | ION METHOD | | 1 Au Gold 31 0.002 OPT | Fire Assay | | SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER | SAMPLE PREPARATIONS NUMBER | | D DRILL CORE 31 2 -150 31 | Assay Prep 31 Excessive Wetness 582 Sample Pickup 1 | | REMARKS: SAMPLE 930-935 WAS NOT RECEIVED WITH THE SAMPLE SHIPMENT. FINAL RESULTS ARE REPORTED. | | | REPORT COPIES TO: MR. JIM BARRON MR. JIM BARRON | NVOICE TO: MR. JIM BARRON | | | | | | | | | | | | | | | - 1 P | | | | | NONE LISTED PAGE 1 | | |--------------------|--| . 3,83% | Bondar-Clegg, Inc. 12980 West Cedar Dr. Lakewood, Colorado 80228 (303) 989-1404 | | BROHM MINING CORP.
MR. JIM BARRON
P.O. BOX 485
DEADWOOD, SD
57732 | | | | |---|---|---|-----|--| | ÷ | + | + | ÷ ÷ | Bondar-Clegg, Inc. 12980 West Cedar Dr. Lakewood, Colorado 80228 (303) 989-1404. | REPORT: 098-1667 (COMPLETE) | | REFERENCE INFO: NONE LISTED | | |--|---|--|-----| | CLIENT: BROHM MINING CORP. PROJECT: NONE LISTED | | SUBMITTED BY: J. BARRON DATE PRINTED: 6-JAN-89 | | | ORDER ELEMENT | NUMBER OF LOWER
ANALYSES DETECTION LIMIT | EXTRACTION METHOD | | | 1 Au Gold | 12 0.002 BPT | Fire Assau | | | SAMPLE TYPES NUMBER | SIZE FRACTIONS | NUMBER SAMPLE PREPARATIONS NUMBER | | | D DRILL CORE 12 | 2 -150 | 12 Assau Prep 12 Excessive Wetness 277 | | | REMARKS: FINAL RESULTS ARE REPORTE | D, | | | | REPORT COPIES TO: MR. JIM BARRON
MR. JIM BARRON | | INVOICE TO: MR. JIM BARRON | | | | | | | | | | | | | | | | A R | Bondar-Clegg, Inc. 12980 West Cedar Dr. Lakewood, Colorado 80228 (303) 989-140 | REPORT: 098-1667 | | 34 | | | PROJECT: NONE LISTE | D DAGE | | | |--|--|-------|--------|------|---------------------|--------|------|-----| | ALTONY 970-1007 | | | | | PRUJECT: NUME LISTE | D PAGE | 1 | -17 | | SAMPLE ELEMENT
NUMBER UNITS | | 149 | 7 | | | | | 1 % | | D2 R88-525-1085-1090
D2 R88-525-1090-1095
D2 R88-525-1095-1100
D2 R88-525-1100-1105
D2 R88-525-1105-1110 | 0.040
0.054
0.044
0.022
0.012 | 35/60 | (1040- | (25) | | | | | | D2 R88-525-1110-1115
D2 R88-525-1115-1120
D2 R88-525-1120-1125
D2 R88-525-1125-1130
D2 R88-525-1130-1135 | 0.015
0.032
0.053
0.009
<0.002 | | | | | | | | | D2 R88-525-1135-1140
D2 R88-525-1140-1145 | 0.002 | 7 12 | # Parc | els in Shipment | | | | | | | | | | | _ | | | | | | | OF | - 5 | AIVI | LLO. | | | | | |------|---|--|--|------|--------------------------|------|------|----------|----------|------|------------|------------|----------|--------|-------|---------------------------------------|---------|--------------|--|---|--------------------------------|-----------------------|--
--|---|-------------------|-------| | | GEOLOG | GIST'S NAME | 0 | 110 | K | 6 | K | 1 | PH | ONE | . NU | JME | BER | _ | | | | | P | RO | JEC | TN | AME 0 | R NUMBER_ | | | | | ples | #
Samples | Sample Numbers
(Series) | Cu | Pb | Zn | Mo | Ag | Cd | Ni | ELEI | MEN'
Mn | TS T
Fe | O B | E AN | ALY | ZED
W | F | Au A | s Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | Ore
test | | | | 32 | N88 53 | Cii | Pb | Zn | Mo | Aŋ | Cq | Ni | Co | Mn | Fe | Bi | ٧ | U | W | FA | y As | Нд | Sn | Sta | 88 | E spec | Neutron
Activation | DCP | ore
test | | | | | 475-930 | Cu | Pb | Zn | Mo | Atj: | Ed | Ni | Co | Min | Fe | Bi | V | U | W | FA | II As | Нд | Sm | SB | Ba | E spec | Neutron
Activation | DCP | ore
test | | | | TE | 1081-1185 | Co | Pb | Zo | Mo | An | Cd | NI | Ca | Mn | Fe | Bi | V | U | w | FA | u As | Ho | Sn | Sb | Ba | Espec | Neutron
Activation | DCP | ore
test | | | | | | Cu | PB | 7n | Ma | An | Cd | 161 | Co | Mes | Fe | Bi | v | 13 | W | FA | u As | Нп | Sa | Sh | Ra | E spec | Neutron
Activation | DCP | ore
tast | -11 | | | | | Car | Ph | 7 n | Ma | 50 | Cd | MI | rtn. | Min | Fe | Ri | V | 11 | W | FA | n As | Ho | Sn | Site | Ra | E spec | Neutron
Activation | DCP | ore | | | + | | | 0 | Pb | 70 | 550 | 0.00 | 04 | NG: | Co. | h/h | 5.0 | 221 | 0 | | 147 | | | Day. | C. | Ch. | DA. | | Neutron | DCP | ora | | | | | | 0.0 | | 6.8 | WIG | MIL | 00 | Deta | U.U. | ALL | FE . | Di | | M | VV | | U AS | ing | SII. | 50 | 1541 | Espec | Activation
Neutron | | test | | | + | | | E7ti | Pb | Zn. | Wa | Ag | Le | NI | CO | MI | 81 | (3) | V | U | W | FA | II AS | Hg | Sit | SB | 13-il | E spec | Activation
Neutron | DCP | test | | | | | | Cu | Pb | Zn | Mo. | AU | Ctl | Ni | Co | Mn | 88 | Bi | V | U | W | FA | u As | Hg | SA | Sb | Ba | E spec | Activation
Neutron | DCP | test | | | H | | | Co | Pb | Zn | Mo | Äij | Cd | Mi | Co | Vin. | Fe | Bi | ٧ | U | W | F. A | U As | Hg | Sn | Sb | Ba | E spec | Activation
Neutron | DCP | lest | | | - | | | Çu | Pb | Zn | Mo | Ag | Cd | NI | Co | Min | Fe | Bi | Ų. | U | W | FA | U As | Hg | Sn | Sb | Ba | E spec | Activation
Neutron | 930 | test | | | 4 | | | Cu | Ph | Zn | Mo | Ag | Cd. | NI | Ca | Mn | Fe | Bi | ٧ | U | W | FA | u As | Hg | Sn | Sb | 88 | E spec | Activation | DCP. | iest | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI | Co | Mn. | Fe | Bi | ٧ | U | W | FA | u As | Нд | Sn | Sh | Ba | E spec | Activation
Neutron | OCP" | test | | | _ | | | - | COL. | - | | | | | | | | 200 | | | | | | | 0 | ch. | 71. | | Activation | DCP | test | | | | | | 50 | ILB. | 6.11 | MD | AB | Ctt | Nt | Co | Min | Fe | Bi | ٧ | U | W | FA | u As | 119 | 9.11 | 24 | D.D | Espec | | UUT | | | | | | | Cn | Pb | Zn | Mo | Ag | Cd | NI
NI | Co | Mn | Fe | Bi | V | U | W | FA | u As | Hg | Sn | Str | Ba | E spec | Neulran
Activation | DCP | ore
lest | | | | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP lest Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP lest Please analyze by Please analyze by Do Not Assay Geochemical Overlimits | | | | | | | | | | | | | | | w
w
} | F A | | | | | | | | | | | | | DO NOT | | OVE | RLIN | geo | och | em | ical | (p) | | | | Bi
Bi | v
v | UUUUU | w w w } | F A me | u As
u As | Hg Hg | Sn
Sn | Sta Sta | Ba
Ba | E spec
E spec | Neutron Activation Neutron Activation | DCP
DCP | ore
test | sampl | | COI | DO NOT
MMENTS
DISCARD
RETURN
STORE 6 | ASSAY GEOCHEMICAL | OVE | RLIM | geo | och | em | ical | l (p | pm. | , tra | ace | | | SAM | W W W W W W W W W W | | | SITIO | DIN [] [] [] [] [] [] [] [] [] [| DISC | ARCURN RE 1 | E spec E spec Seed PI AFTER COD AFTER YEAR- | Neutron Activation Neutron Activation | DCP DCP red Dared DMPLETE | ore lest ore test | | | COI | DO NOT
MMENTS
DISCARE
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | OVE | RLIM | ged
MITS
ETE | 60 I | DAY | rical RE | (p | PLE | , tra | E INI | DICA | ATE | | | E DI | SPOS | SITIO | ON CONTRACTOR | DISC | ARE
JRN
1E CH | E spec E spec Seed PI AFTER COD AFTER YEAR- | Neutron Activation Neutron Activation prepar unprep | DCP DCP red Dared DMPLETE | ore lest ore test | | | COI | DO NOT MMENTS DISCARD RETURN STORE 6 CH | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | MPLE | RLIM | ged
MITS
ETE | 60 I | DAY | r's RE | I (p | PLE | ASE | E INI | DICA | ATE | | AMP | E DI | SPOS | SITIO S S S S S S S S S S S S S S S S S S S | ON FROM | DISC
RETU
TO: | ARE
JRN
RE 1 | E spec E spec Seed PI AFTER COD AF YEAR-I ARGE V | Neutron Activation Neutron Activation prepar unprep | DCP | ore lest ore lest | 'EAR | | STO | DISCARI
RETURN
STORE 6
DRAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | MPLE | RLIM | ged
MITS
ETE
ER | 60 I | DAY | rical RE | I (p | PLE | ASE | E INI | DICA | ANE | | AMP | LES I | TO I | SSITION SSITIO | IN ENT | DISC
RETU
RAGE | ARE
JRN
RE 1 | E spec E spec Seed Per | Neutron Activation Neutron Activation Prepar unprepar un prepar pre | DCP | ore lest ore lest | /EAR | | CON | DISCARD
RETURN
STORE CO
Results.
Invoices | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | MPLE | RLIM | ged
MITS
ETE
ER | 60 I | DAY | 'S RE | I (p | PLE | ASE | E INI | DICA | AND | | AMP | LES III | TO I | SSITICE SS SBE S | ON ENT | DISC
RETURNER AGE | ARE
JRN
RE 1 | E spec E spec Seed PI AFTER COD AF YEAR-H HARGE V | Neutron Activation Neutron Activation Prepar unprepar un prepar pre | DOMPLETE IS COMPI | ore lest ore lest | EAR . | | STO | DISCARI
RETURN
STORE 6
DRAGE CH
Results .
Invoices
Pulps
Rejects . | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | OVER OVER ON THE COMMENT OF COME | RLIM | ged
MITS
ETE
ER | 60 I | DAY | RE | I (p | PLE | ASE | E INI | DICA | AND | | AMP | LES III | TO I | SSITION SSITIO | ON CONTRACTOR | DISC
RETU
STOR
RAGE | ARE
JRN
RE 1 | E spec E spec PI AFTER COD AF YEAR-I BARGE V | Neutron Activation Neutron Activation Prepar unprepart u | DCP | ore lest ore lest | 'EAR | | COM | DISCARI
RETURN
STORE CO
RAGE CH
Results Invoices
Pulps —
Rejects . | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | MPLE | RLIM | ged
MITS
ETE
ER | 60 I | DAY | RE | I (p | PLE | ASE INV | E INI | DICA | AND | | AMP | LES III | TO I | SSITION SSITIO | IN FROM STOR | DISC
RETU
STORAGE
TO: | ARE
JRN
RE 1 | E spec E spec Seed PI AFTER COD AF YEAR-I ARGE V | Neutron Activation Neutron Activation Prepar ULPS ANALYSIS COFTER ANALYSIS RETURN COD WILL BE ASSE | DCP | ore lest ore lest | /EAR | | COM | DISCARD
RETURN
STORE CO
RAGE CH
Results .
Invoices
Pulps
Rejects . | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | MPLE COM | RLIM | ged
MITS
ETE
ER | 60 I | DAY | RE | I (p | PLE | , tra | E INI | DICA | AND | | AMP | LES III | TO I | SSITION SSITIO | ON CONTRACTOR | DISC
RETU
STOR
RAGE | ARCURN
JRN
E CH | E spec E spec Sed PI AFTER COD AF YEAR-I HARGE V | Neutron Activation Neutron Activation Prepar unprepart u | DCP | ore lest ore lest | /EAR | | | Date C | | 1 | | | | | | | | | | | | | | | . 01 | Juic | • | 0 | _ | | | | |
--|--|--|--|--|---------------------------|------------------------|----------|---|--|---------------------------|--|------|-------|---------|---|---------|--|--|---|-------------------------------|--------------------|-----------------------------------|--|--|---------------------|---------| | | GEOLOGIST'S NAMEPHONE NUMBER ples # Sample Numbers (Series) | | | | | | | | | | | | | | | LNU | JMB | ER | OF | S | AM | PLES | 9 | AT. | | | | Type Samples (Series) Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec I | | | | | | | | | | | | | | | R NUMBER | | 100 | | | | | | | | | | | Samples # Sample Numbers (Series) Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test | lhe | Samples | K100-5-35 | - | | | | | | | | | T | T | T | Ü | - K | 1 | T | 011 | | | | Neutron | | pre | | | 1 | 95 Cu Pb Zn Mo Ag Cd Ni Co Ma Fe Bi V 930 925 Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V | | | | | | | | | | | | | | | 1 100 | AS | | 200 | 20 | | | Neutron | | are | | | | | Oan Boil | 1211 | | | | 1 | | | | MA | 8 | 81 1 | U | W | F AI | As | | SA | 20 | | | Neutran | | | | | | | 1100 7401 | CH | | | Mo | Ag | Cd | 761 | Co | Min i | 8 1 | BIN | l U | W | F AI | A.S | Hg. | Sn | Sb | 88 | E spec | The state of s | | | 3 3 | | | Cu Pb Zn Mo Ag Cd Nì Co Mn Fe Bi V | | | | | | | | | | | | | | | F A | As | Hg | Sn | Sb | Ва | Espec | Activation
Neutron | DCP | test | | | | Cu Ph Zn Mo Ag Cd Ni Co Mn Fe Si V | | | | | | | | | | | | | | | F A | As | Hg | Sa | Sb | 88 | E spec | Activation
Neutron | DCP | lest | | | | | | Cu | Ph | Zn | Mo | Ag | Cd | Ni | Ca | Mn (| Fe I | BI V | U | W | F At | I As | Hg | Sin | Sb | Ba | Espec | Activation | DCP | iest | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI | Ca | Mn | e | Bi V | U | W | F A | As. | Hg | SH | Sb | Ba | E spec | Neutron
Activation | DCP | test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn S | e | Bi V | U | W | F Au | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | test | | | | | | Cu | Pb | Zn | Ma | Ag | Ctt | Ni. | Cn | Win 8 | e | Bi V | u | w | F AI | As | Hg | Sn | Sb | 88 | E spec | Neutron
Activation | DCP | ore
lest | | | | | | Cu | Pb | Zn | Ma | Ag | Cd | Ni | Co | Mn F | -0 | Bi V | U | W | F A | As | Hg | Sn | Sb | Ba. | E spec | Neotron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI | Co | Mn | 8 | Bi V | U | W | F A | As | Hg | Sn | Sb - | Ba | Espec | Neutron
Activation | DCP | ore
lest | | | | A Hyd | | Cu | Ph | Zn | Ma | An | Cit | MI | Co | Mn I | e | Bł V | 1 13 | w | FAI | As | Ha | Sn | Sh | 9a | E spec | Neutron
Activation | DCP | ore
test | | | | | | - | 6334 | Zn | Mo | A.H | Cd | NI | 0.0 | | | | , , | la. | - | Ne. | На | Sn | Sh | 82 | Espec | Neutron
Activation | DCP | pre
test | | | | | | CU | 12.43 | 16.11 | | 100.61 | | | DA 63 | Min i | 43 | 51 V | 1 1 1 1 | WW. | P PAI | | | | | | | | | | | | | | | | Ph | | | Ad | | | Co | Ma I | e e | Si V | 1 10 | w | F AL | AS | Ro | Sn | Sh | Ra | Fenne | Neutron | псе | ore
test | 1 | | | Please | analyze by | Cu Cu | Pb
Pb | Zn
Zn | Mo | | Cd
Cd | NI
NI
re g | Co
Co
grac | Mn I | 8 1 | Bi V | / U | w w | F At | As As | Hg | Sn
Sn | Sb
Sb
end | Ba
Ba | | Neutron
Activation
prepar | | ore test | samples | | | DO NOT | ASSAY GEOCHEMICAL (| Cu | Pb Pb | Zn
ass | Mo | Ag
(% | Cd
Cd | NI
NI
re g | Co
Co
grac | Mn F | 8 1 | Bi V | o o o | } | F At me | As As | Hg | Sn
Sn | Str Str | Ва | E spec | Neutron
Activation | DCP | test | samples | | | DO NOT | , | Cu | Pb Pb | Zn
ass | Mo | Ag
(% | Cd
Cd | NI
NI
re g | Co
Co
grac | Mn I | 8 1 | Bi V | el) | } | F Au | As As | Hg | Sn | Sb end | Ва | E spec | Neutron
Activation
prepar | DCP | test | samples | | | DO NOT | ASSAY GEOCHEMICAL (| Cu | Pb Pb | Zn
ass | Mo | Ag
(% | Cd
Cd | NI
NI
re g | Co
Co
grac | Mn I
 8 1 | Bi V | o u | } | F At me | AS
thoc | Hg | Sn
Sn | Str. Str. | Ва | E spec | Neutron
Activation
prepar | DCP | test | samples | | | DO NOT | ASSAY GEOCHEMICAL (| Cu | Pb Pb | Zn
ass | Mo | Ag
(% | Cd
Cd | NI Pre g | Co
Co
pracom, | Ma M | ce | | | }
MPL | F At me | | Hg
Hg | | Sb Sb end | Ва | sed C | Activation Neutron Activation prepair unprep | DCP | test | samples | | | DO NOT | ASSAY GEOCHEMICAL (| Cu | Pb Pb RLIM | Zn
ass | Mo | Ag
(% | Cd
Cd | NI Pre g | Co
Co
pracom, | Ma M | ce | | | }
************************************ | | | Hg
Hg | N | | Ba | sed C | Neutron
Activation
prepar | per red pared | lest
ore
lest | samples | | COM | DO NOT
MMENTS
DISCARI
RETURN | COARSE REJECTS AFTER ANALYSIS COM COD AFTER ANALYSIS | Cu | Pb Pb RLIM | Zn
Zn
ass
geo | Mo
Mo
Say
och | Ag
(% | Cd
Cd | NI Pre g | Co
Co
pracom, | Ma M | ce | | | }
MPL | | | Hg Hg | N D R | DISCRETU | Ba Closs | sed Con After Cod Af | Activation Neutron Activation Prepar Unprepar Analysis Corter Analysis | per red pared | lest ore test | samples | | COM | DO NOT
MMENTS
DISCARI
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD | CUCOVER | Ph P | ass
geo
MITS | Mo
Mo
say
och | (%
em | cd cd cd cd cd | NI Pre g | Co
Co
pracom, | Ma M | ce | | | }
************************************ | | | Hg Hg | N D R | DISCRETU | ARD | e spec Cod AFTER COD AFTER YEAR-I | Activation Neutron Activation Prepar Unprepar Analysis Content C | DEP
red
Dared | lest ore test | | | CON | DO NOT
MMENTS
DISCARI
RETURN
STORE 6 | COARSE REJECTS AFTER ANALYSIS COM COD AFTER ANALYSIS | CUCOVER | Ph P | ass
geo
MITS | Mo
Mo
say
och | (%
em | cd cd cd cd cd | NI Pre g | Co
Co
pracom, | Ma M | ce | | | }
************************************ | | | Hg Hg | N D R | DISCRETU | ARD | e spec Cod AFTER COD AFTER YEAR-I | Activation Neutron Activation Prepar Unprepar Analysis Corter Analysis | DEP
red
Dared | lest ore test | | | CON | DO NOT
MMENTS
DISCARI
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD | CUCOVER | Ph P | ass
geo
MITS | Mo
Mo
say
och | (%
em | od od od od | NI N | co
co
pracom, | dde)
, tra | ce | IICAT | FE SA | | | spos | ITIO | N D R STOR | DISCARETU | ARD | e spec Cod AFTER COD AFTER YEAR-I | Activation Neutron Activation Prepar Unprepar Analysis Content C | DEP
red
Dared | lest ore test | | | CON | DO NOT
MMENTS
DISCARI
RETURN
STORE (C) | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | DUCOVER | Pb P | ass
geo | Mo Mo Saay och | (% em | cd cd cd s RE | re g | Co
Co
Dom, | de)
, tra | ce | HICAT | FE SA | SAME | E DIS | SPOS | Hg H | N D R STOR | TO: | ARDIRN RE 1: CH | PI AFTER COD AFTER YEAR-IARGE V | Activation Neutron Activation Prepar Unprepar Unprepar ANALYSIS CONTER ANALYS | DEP
red
pared | lest ore text | /EAR | | CON | DISCARI
RETURN
STORE 6
PRAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD | DOVE | Pb P | assiged MITS | Mo Mo Say och | (% em | cd cd cd s or ical | re g (pt | co
practom, | de)
, tra | CCE | HICAT | FE SA | SAME | E DIS | TO B | Hg H | N D R S S TOR | DISCARETURA TO: | ARDIRN RE 1: CH | PI AFTER COD AF YEAR-I ARGE V | Activation Neutron Activation Prepar Unprepar Analysis Content C | DEP
red
Dared
DMPLETE
IS COMPI | LETE TER 1) | /EAR | | CON | DISCARI
RETURN
STORE 6
PRAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | Cu | Ph P | ass
geo
MITS
ETE | Mo Mo Say och | (% em | cd cd cd s, or ical | re g | Co
praction, | de)
, tra | oce | ES A | FE SA | SAME | E DIS | TO B | Hg H | N DI RI STOR | DISC. | ARDIRN RE 1: CH | PI AFTER COD AF YEAR-I ARGE V | Activation Neutrop Activation Prepar unprepar unprepar ANALYSIS CONTER CONTE | DEP
red
Dared
DMPLETE
IS COMPI | lest ore test } | /EAR | | CON | DISCARI
RETURN
STORE 6
PRAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | Cu | Ph P | ass
geo
MITS
ETE | Mo Mo say och | (% em | cd cd cd some series | re g | Co
Co
pirac
com, | Ma M | IND | ES A | FE SA | 6AMF | E DIS | TO Besult: | Hg H | N D R STOR | DISCARETU
BTOF
MAGE | ARD
RRN
RE 1 | PI AFTER COD AF YEAR-I | Activation Neutron Activation Prepair Unprepair Unprepair ANALYSIS CONTER ANA | pared DMPLETE IS COMPI | lest ore test } | /EAR | | CON | DISCARI
RETURN
STORE 6
PRAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | CU | Ph P | ass
geo
MITS | Mo Mo say och | (% em | od od od or | ni pre g | Co
Co
Irac
Dom, | Ma M | ind | ES A | FE SA | GAMP | E DIS | TO Besults | ITION STEEPS | N D R S S T O R | DISC.
RETU
STOP
MAGE | ARDIRN : CH | PI AFTER COD AF YEAR-HARGE V | Activation Neutron Activation Prepar Unprepar Unprepar Activation Prepar Unprepar | pered pared DMPLETE IS COMPI | lest ore test } } | /EAR | | cor | DISCARI
RETURN
STORE 6
Pulps
Rejects | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | CU | Ph P | ass
geo
MITS | Mo Mo say och | (% em | s RE | NI (pt | Co
gracom, | de)
, tra | CCE | HICAT | FE SA | GAMF | E DIS | TO Besults | ITIO | N D D R STOR | DISC.
RETURNAGE
TO: | ARDIRN RE 1 CH | PI AFTER COD AF YEAR-I ARGE V | Activation Neutron Activation Prepar Unprepar Unprepar Activation Prepar Unprepar | pered pared DMPLETE IS COMPI | lest ore test } | /EAR | | CON | DISCARI
RETURN
STORE 6
PRAGE CH
Results Invoices
Pulps —
Rejects Invoice Pulps — | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | OVER | Ph P | Zn assiged MITS | Mo Mo say och | (% em | S RE | re g | Co
Dracom, | de)
, tra | CCE | ES A | FE SA | GAMP
C
C
C | E DIS | TO Besult: voice sults s | ITIO | N D F F F F F F F F F F F F F F F F F F | DISC.
RETU
STOP
MAGE | ARDIRN IE CH | PI AFTER COD AF YEAR-I ARGE V | Activation Neutron Activation Prepar Unprepar Unprepar ANALYSIS CONTER ANALYSIS CONTER ANALYSIS CONTER ANALYSIS CONTER ANALYSIS RETURN COD WILL BE ASSE | DEP
red
Dared
DMPLETE
IS COMPI | LETE TER 1) | /EAR | #### SAMPLE SHIPMENT NOTICE | | Date S | hipped | 2/ | 0 | | | | | | | | | Via | a _ | | | | | P | rep | aid | 1 | 0 | r C | Collect | | | | |---|--|---------------------|------|------------|------|------|---|--------|-------|------|--------|--------|------|------|------|-------|------|--|--|----------|-------|------|------|---------|-----------------------|----------|-------------|--------------| | | # Parc | cels in Shipment | | | | | | | | | | | | | ТО | TA | LN | NUN | ив | ER | OF | SA | AM | PLES | 300000 | | | | | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Neutron Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Neutron Activation DCP test Neutron OFF | moles | mples # Sample Numbers (Series) Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test | Туре | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn | Fe | Bi | ٧ | U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Activation | DCP | test | | | 4 | 5 | 189 525 | Cu | Pb | Zn | aM | Ag | Cd | NI | Co | Min | Fe | 81 | ٧ | U | W | E/ | Au | As | Hg : | Sn | Str | Ba | E spec | | DCP | | | | 4 | | 165 670 | Cu | Pb | Zn | Mio | Ad | Cd | Ni | Ce | Mn | Fe | Bi | V | U | W | E | An | As- | Hg | Sit | Sb | | E spec | | DCP | | | | | | 6853690 | Cu | Ph | 70 | Mo | An | Cal | tal i | Co | Mn | FR | 81 | v | u | W | F | Au | As | На | Sn. | Sb | 88 | É soec | | DCP | | | | | | | 124 | Div | 20 | 100 | 50 | Pris . | 9.11 | 0 | Ata | | 0. | 11 | | W | | | n. | 110 | 0.4 | O la | Da | 19 | Neutron | DCP | 910 | | | | | | 0.0 | 10 | KIII | MITI | 34/7 | CB | 141 | 6.0 | 12731 | re | DI | ¥ | u | W | | MIL | NA. | ng | 50 | 20 | 0.8 | Espec | Negtron Negtron | | test | | | | | | Cu | Ph | Zn | Mo. | Ag | Cd | Ni | Co | Mn. | Fe | Bi | V | U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Activation Neutron | DCP | test | 10 | | | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn | Fe | 81 | ٧ | U | W | F | Au | As | Hg | Sn | Sh
| 8a | E spec | Activation | DCP | test. | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI | Co | Mn | Fe | Si | V | U | W | F | Au | As. | Hg | Sin . | Sb | 88 | E spec | Neutron
Activation | DCP | test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn | | 8: | y. | u | W | F | Au | As | Ha | Sn | Sb | | E spec | Neutron
Activation | OCP | ore
test | | | | | | Cu | Die | 70 | Não. | 50 | CH | 521 | r. | Ma | | 0. | | | 1,67 | - | Acres 1 | A.P | Mn | 00 | ch. | 0.0 | Eanne | Neutron | nea | ore | | | | | | - | | | | r.y | | | | Juli . | | 01 | | | - | | 7712 | 7.0 | rig | 5311 | UIV. | 00 | e span | Neutran. | | ore | | | | | | Cu | Ph | Zn | MD. | Ag | Cd | 244 | Co | Vin | Fe | Bi. | V | U | W | F | Au | AS | Hg | Sn | Sb | Ba | Espec | | DCP | | | | | | | Ca | Pb | Zn | Ma | An | Cq | Mi | Co | Mn | FB | Bi | V | U | W | F | Au | As | Hg | Sn | Sb | Ba | Espec | Activation | DCP | test | | | | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test | Cu | Ph | Zn | Me | Ag | Cd | Ni | Ca | Vin | Fe | 81 | ٧ | U | W. | F | Au | As | Hg | Sn | Sb | B2 | E spec | Neutran
Activation | DCP | ore
test | | | | | | Cu | Ph | Zn | Mo | An | Ce d | ME | Co | Min - | C g | 81 | V | u | W | F | An | Ac | Hn | Sn | Rit | Ba | Espec | Neutron
Activation | DCP | ore
test | Neutron
Activation | DEP | ore
test | | | | Please | analyze by | 1 | 7 | ass | say | (% | , 01 | re (| grad | de) | | | | | } | m | neth | nod: | s. t | he | enc | clos | sed | { prepar | red | } | samples | | | | | | | ged | och | em | ical | l (p | pm | , tra | ace | lev | rel) | | , | | | | | | | | | unpre | pared | , | | | | DO NOT | ASSAY GEOCHEMICAL | OVE | RLII | MITS | 3 | COI | MMENTS | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | - | | • | The state of | | П | | | | | | | | | | DIE | ASE | INI | DIC/ | ATE | SA | MDI | E | NSP | OSI | TIO | VI. | | | | | | | - | | | | COARSE REJECTS | | | | | | | | FLE | AOL | . IIVI | DIU | 416 | SA | IVIEL | | ЛОГ | 031 | 1101 | | | | PI | ULPS | | | | | | | D AFTER ANALYSIS CO | MPLE | TE | AFTER | ANALYSIS C | | | | | D | | COD AFTER ANALYSIS | CON | IPL | ETE | TER ANALYS | IS COMPL | ETE | | | | | 60 DAYS-DISCARD | CED | | | 00.1 | 244 | 0 | | | | | | | | | | | | | | | | | RETURN COD | CCCD AF | TCD 4 V | FAD | | OT | DAAR OL | | | | | | | | | | | | | | | | | | | 5 | UH | AGE | LI | IAHUE V | WILL BE ASSE | SSEU AF | IERIY | EAR | | STO | DRAGE CH | HARGE WILL BE ASSES | SEU | AFI | EH | 60 I | JAY | 0 | STO | DRAGE CH | HANGE WILL BE ASSES | SEU | AFI | EH | b0 I | JAY | | SUI | LTS. | INV | /010 | CES | ANI | D S | AMF | PLES | S TO |) BE | SE | NT | TO: | | | | | | | | STO | | | | | | | | RE | SUI | LTS. | INV | /010 | CES | ANI | D S | AMF | | | | | | | | | | | | | | | Results . | Val | 3 | h | | | 1 | RE | | | | | - | ANI | D S | [| | Res | ults | | | | | | | | | | | 00 | Results . | V 19 1 | 27 | h | - | 0 | N | RE | | | | | | ANI | D S | [| | Res | ults | | | | | 4 | | | | | | 0 | Results .
Invoices
Pulps | Val | 3 | h | 1 | 0 | 1 | RE | | | | | | ANI | D S | 0 | | Res
Invo | ults
pices | | | | | | | | | | | 000 | Results .
Invoices
Pulps
Rejects . | <u> </u> | | h | | | 1 | RE | | | | | - | ANI | D S | | | Res
Invo
Pulp
Reje | ults
pices
ps _
ects | <u>-</u> | | | | | | | | _ | | 000 | Results Invoices Pulps Rejects . | Vig f | 3 | to | | | N. C. | RE | | | | | | ANI | D S | | | Res
Invo
Pulp
Reje | ults
pices
ps _
ects | - | | | | | 4 | | ¥ | | | 0000000 | Results Invoices Pulps Rejects Résults Invoice | V 19 f | | h | 1 | | 1 | RE | | | | | - | ANI | D S. | | | Res
Invo
Pulp
Reje
Res
Invo | ults
pices
pects
ults
pice | - | | | | | 4 | 6 | ¥ | | | 0000 000 | Results Invoices Pulps — Rejects . Invoice _ Pulps — | Vig f | | he | | 0 | 1 | RE | | | | | | ANI | D S | | | Res
Invo
Pulp
Reje
Res
Invo | ults
pices
ects
ults
pice | - | | | | | 4 | | ¥ | | | pies # Sample Numbers ELEMENTS TO BE ANALYZED Neutron | Ore test | 64.0 | 468 | | | 31 50 | - | | d | pai | rep | F | | | | | a _ | _Via | _ | _ | | _ | _ | 100 | - | | 1 | | | # 11 | hipped | Jaic O | | |--|--|---|---
--|--|---|----|-------|------|-----|--------|-------------------------------|-------------------|------|-------|-----|------|------|------|-------|------|-----|-------|------|-------|----------|------|------|-------|-------------|-------------------|-----------------------------------|----| | | Ore | | | Maria III | _ | PLES | MI | SA | F | 0 | ER | ИВ | NUN | LN | ATO | ТО | | | | | | | | - | 4 | | | | | ent | cels in Shipment_ | # Parc | | | Samples (Series) Cu PP Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sb Be Espec Activation OCP | GEOLOGIST'S NAMEPHONE NUMBERPROJECT NAME OR NUMBER Gamples # Sample Numbers (Series) | Cu Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Mg Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Cd Mi Co Mn Fe Bi V U W F Ag As Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Mg Sn Sn Ma Ba Espec Activation DCP Ca Pb Zn Ma Ag Mg Sn Sn Ma Ag Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Mg Sn Sn Ma Ag Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Mg Sn Sn Ma Ag Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Mg Sn Sn Ma Ag Mg Sn Sn Ba Espec Activation DCP Ca Pb Zn Ma Ag Mg Sn Sn Mg Mg Mg M | Samples (Series) Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test | Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au Ac Ng Sn Sb Ba Espec Activation DCP Co Pb Zn Ma Ag Cd Ni | DTC tock | DC-0 107 | nee | Neutron | + | | | | 0 | 0.0 | Li es | A. | 1 | E | w | | V | Di | | | | | Cd | A to | | | | T | Cu | 50 | (ocitos) | vampics | + | | Ca Pb Za Ma Ag Cd Ni Ca Ma Fe Bi V U W F As As Hg Sa Sb Ba Espec Activation DCP | are | 10 | | Neutron | + | | a | 1 | 0 | 90 | rig | 7.5 | 100 | 1 | 17 | | | Di | i.e | ASSES | - u | 791 | L II | rig | MID. | | | + | Lu | -7/3/ | | | + | | Co Pb Zn Mo Ag Cd Ni Co Nn Fe Bi V U W F An As Hg Sn Ss Ba E spec Activation OCP | | 10 | | | + | t spec | 8 | ti ti | 2 | 50 | Hg | AS | Au | 1 | VV | U. | V | 151 | 9-9 | MIN | CB | NI | Gd | Ag | MO | | | + | Cu | 76/ | 100000000 | | + | | CU P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V
U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sh Ba Espec Activation DCP Cu P0 Zn Ma Aq Cd Ni | test | DCP te | DCP | Activation | Cu Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Neutro
Activation | Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Ca Pb Zn Ma Ag Cd Ni Co Mn Fe 3i V U W F Au As Hg Sn Sb Ba E spec Activation DCP Please analyze by Please analyze by Please indicate sample disposition COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE | test | DCP 18 | DCP | Activation | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sh Ba Espec Activation Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sh Ba Espec Activation Neutron Neutron | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni | ore
lest | DCP of le | DCP | Activation | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec A Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec A | Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Ng Sn Sb Ba Espec Activation DCP Please analyze by Please analyze by Please analyze by Please INDICATE SAMPLE DISPOSITION PLEASE INDICATE SAMPLE DISPOSITION PULPS DISCARD AFTER ANALYSIS COMPLETE DISCARD AFTER ANALYSIS COMPLETE | ore
test | DCP 16 | DCP | | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec I | Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Cu Pb Za Ma Ag Cd Ni Co Ma Fe Bi V U W F Au As Mg Sa Sb Ba E spec Activation DCP Please analyze by Please analyze by Please analyze by PLEASE INDICATE SAMPLE DISPOSITION COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE DISCARD AFTER ANALYSIS COMPLETE | ore
lest | DCP or | DOP | | | Cu Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Bz E spec | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Activation DCP Please analyze by Please analyze by Please analyze by PLEASE INDICATE SAMPLE DISPOSITION COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE DISCARD AFTER ANALYSIS COMPLETE | ore
test | | DCP | | | E spec | 8 | b (8) | 1 5 | Sn | На | As | Au | H | w | U | v | BI | Fe | Mn | Co | Ni | Cd | A17 | Mo | Zn | Pb : | 0 | Cu | | | | T | | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Please analyze by Please analyze by Please analyze by PLEASE INDICATE SAMPLE DISPOSITION COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE DISCARD AFTER ANALYSIS COMPLETE | ora last | | Cu Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Neutron Activation DCP Neutron Neutron | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Mg Sn Sb Ba Espec Activation OCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Mg Sn Sb Ba Espec Activation OCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Mg Sn Sb Ba Espec Activation OCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Mg Sn Sb Ba Espec Activation OCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Mg Sn Sb Ba Espec Activation OCP Please analyze by Please analyze by Please analyze by PLEASE INDICATE SAMPLE DISPOSITION COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE DISCARD AFTER ANALYSIS COMPLETE | gre sto | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test | Cu Pb Zn Mo
Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Su Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Su Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP Please analyze by Please analyze by Please indicate sample disposition COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE DISCARD AFTER ANALYSIS COMPLETE | ore | Of | | Neutron | + | r shar | - | | 1 0 | 01 | 0.8 | 755 | nu. | - | 17 | | | DI | - | eria. | 6-11 | PHI | to to | PHY | mu. | 6.03 | - 41 | 1 | UU | | | 50. 1 | + | | Cu Pb Zn Ma An Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sb Ba E spec Activation DCP Cu Pb Zn Ma An Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sb Ba E spec Activation DCP Cu Pb Zn Ma An Cd Ni Co Mn Fe Bi V U W F Au As Ng Sn Sb Ba E spec Activation DCP Please analyze by | ore | 01 | | | + | e spec | 8 | 0 0 | 1 8 | 011 | HD | AS | AU | 1 | W | U | V | Bi | 9-8 | Min | CO. | NI | Cd | Ag | Min . | Zn | Ph | - | Cu | | | 200 | + | | Please analyze by Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Mg Sn Sb Ba E spec Activation DCP | test
ore | | DCP | | + | E spec | a | 10 10 | S | Sn | Hg | As | Au. | F | W | U | V | Bi | Fe | Mn | Cn | NI. | Cd | Ag | Mo | Zn | Pb | F | Cu | | | | + | | Please analyze by Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP | test | 001 | DCP | Activation | + | E spec | a | b B | S | So | Hg | As | Au | F | W | U | ٧ | Bi | Fe | Min | Co | Nī | Cd | Ag | Mo | Zn | Ph | - | Cu | | | | + | | Please analyze by Cu Pb Zn Mo Ag Cd Mu Co Mn Fe Bi V U W F Au As Hg Sn Bb E Spec Activation DCP | ore | DCP te | DCP | Activation | 1 | E spec | 8 | b 8 | S | Sn | Hg | As | Au. | F | W | U | V | 81 | Fe | Mn | Co | Ni | Cd | Ag | Mo | Zn | Pb | - | Cu | | | | | | Please analyze by geochemical (ppm, trace level) methods, the enclosed unprepared unprepared please indicate sample disposition COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE | ore
test | | DCP | | | E spec | 3 | B B | S | St | Hq | As | Au | F | W | U | V | Bi | Fe | Min | Co | Mi | Cd, | Ag | Mo | 2n | Pb | | Cu | | | | | | PLEASE INDICATE SAMPLE DISPOSITION COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE DISCARD AFTER ANALYSIS COMPLETE | | ared | pared | Cunpre | 9 | / | | | | | | | | | , | | vel) | e le | ace | , tr | pm | (p) | ical | emi | | | | | | | | Maria de | | | COARSE REJECTS DISCARD AFTER ANALYSIS COMPLETE □ DISCARD AFTER ANALYSIS COMPLETE | MENIS. | UN | | COARSE REJECTS □ DISCARD AFTER ANALYSIS COMPLETE □ DISCARD AFTER ANALYSIS COMPLETE | | | | 2 | _ | THE STATE OF | | | DISCARD AFTER ANALYSIS COMPLETE | | | | | | | | | | N | ITIO | os | DISP | E | MPL | SA | ATE | DIC | E IN | ASI | PLE | | | | | | | | | | | | | | | | MDI ETE | OMDLE | The state of s | | | 00 | 204 | DIC | , | _ | | | | | | | | | | | | | | | | | | 401.5 | The same of | | Secretary of the second | | | TILIONIA GOD VI LEIL VIEWELOIG COMILECTE | FTF | | | | | | | | 2000 | | | | | | | | | | | | | | | | | TE | | | | | | | | | STORE 60 DAYS-DISCARD STORE 1 YEAR-RETURN COD | | J OOM LETE | | | | TO THE REAL PROPERTY. | | | 700 | | | | | | | | | | | | | | | | | -1- | | 1411 | 001 | | | and the second | | | TORAGE CHARGE WILL BE ASSESSED AFTER 60 DAYS STORAGE CHARGE WILL BE ASSESSED AFTER 60 DAYS | | SED AFTER | ESSED | L BE ASSE | WI | ARGE | СН | GE | RA | STO | S | | | | | | | | | | | | S | YAC | 60 (| ER | AFT | A | SED | ASSESS | HARGE WILL BE ASS | RAGE CH | 0 | | DECLIFIES ANNOINCE AND CAMPLES TO BE SENT TO. | TER 1 YEAR | | | | | | | 0 | T T | CAC | | 0.0 | CT | 01.5 | | 0.0 | | 050 | V01 | | ** | | 0.5 | | | | | | | | | | | | RESULTS, INVOICES AND SAMPLES TO BE SENT TO: | TER 1 YEAR | | | | | | | U. | 1 1 | EIA | ES | UB | 5 11 | LLE | AIVII | U S | AIV | | | | | | | | | | | | | | | | | | Results Results | TER 1 YEAR | | | | | | | | | | s | sults | Res | | 1 | | | | | | | | | | | <u> </u> | 011 | 3 | K/A | BAH | HH Dr | Reculte | | | Invoices Invoices | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | Jeanita - | | | | | | | | | | | | | - | es_ | oice | Inve | _ | , | | | - | | | | | | | _ | 7.0 | | | | 1117 | 126611 | | | | Rejects Rejects | | | | | | | | | | | | ps. | Pul | | - | | | - | | | | | | | | | | | | | <u> </u> | nvoices
Pulps | | | Results Results | | | | | | | | | | | | ps. | Pul | | - | | | - | | | | | | | | | | | | | <u> </u> | nvoices
Pulps | | | 1 Javaice | | | | | | | | | | 1 | s | ps _
ects | Pul | | - | | | - | | | | | | | | | | | | | | nvoices
Pulps
Rejects _ | 1 | | Invoice | | | | | | | | | | 2 | s
s | ps _
ects
sults
oice | Pul
Rej
Res | | (| | | - | | | | | | | | | | | | | | nvoices Pulps Rejects _ Results _ | | | # | # Parc | els in Shipment | | | | | | | | | | | _ | - 9 | 101 | IAL | NUI | MBI | ER | OF | SA | M | PLES. | 1 | | | | |---|--|--|------|------|---------------------------|------|-------|----------|------|-----|---------|------------|----------|-----------|-----------|----------|----------------------------------|------------------|----------|----------------|-------------------------------------|-----------------------|---------------------------------|--|-------------------------|---------------------------------|------| | | | GIST'S NAME | es s | #
Samples | Sample Numbers
(Series) | Cu | Pb | Zn | Mo | Ag | Cd | Ni | ELE | MEN' | TS T
Fe | O B | E AN | ALYZ
U | ZED
W | F Au | As | Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | Ore
test | | | 1 | 15 | K88 535 | Сш | ph | Zn | Mo | Ag | Cd | Ni | Co | Ma | Fe | 81 | ٧ | U | W | Au | As | Hg | Sm | Sb B | a | E spec | Neutron
Activation | DCP | are
test | | | | FO. | 0.83651 | 83 | Pb | Zn | Nio | Ag | Cd | Ni | Ca | Min | Fe | Bi | V | U | W | Au | As | Hg | Sm | Sb E | a l | E spec | Neutron
Activation | DCP | ore
test | | | T | | | Ca | Ph | zn | Mo | Au | Cd | 143 | Co | Min | Fe | Bi | v | U | W | Att | As | Ho | Sn | Sh B | 3 | E spec | Neutron
Activation | DCP | ore
test | | | 1 | | | Cul | Pb | Zn | Mo | An | Cd | Ni | Co | Min | FR | Ri | v | 11 1 | W I | Au | Asi | Hn | Sn | Sh P | 2 | E spec | Neutron
Activation | DCP | ore | | | + | | | Pa. | Ph | Zn | Mo | 5 m | Cit | 531 | Cn | On. | Eo | 101 | V. | 11 | w | Au | An | Ha | Sn. | Ch E | 9 | E spec | Neutron
Activation | DCP | ore | | | - | | | 00 | | Zn | 100 | Au | 04 | 137 | 0 | 10 | | ni | 0 | | | 8 | 150 | Li | Ca. | C 10 | | | Neutron | | 910 | | | + | | | LU. | Ph | | MO | AU. | | 141 | 60 | BEITT . | - 6 | DI | W. | | VV I | Au | A.S | ng- | O.H. | 00 0 | 4 | E spec | Neutron Neutron | DCP | lest | | | + | | | Cu | Ph | Zn | Ma | Aq | Ed | NI | Co | Min | 1-8 | 81 | V | U | W | Att | AS | Hg : | Sin | 80 8 | a | Espec | Activation
Neutron | DCP | test | | | + | | | Cu | Pb | Zn. | MQ. | Ag | Cu | Ni | So. | Man | FB | Bi | ٧ | U | W | Au | As | Hg | Sn | Sb B | 3 | E spec | Activation | DCP | test | | | - | | | Cn | Pb, | Zn | Mo | Ag | Cd | Ni | Co | Ma | Fe | 81 | V | U | W | AU | As | Hg | Sn | Sb B | 9 | E spec | Activation
Neutron | OCP | lest | | | + | | | Cu | Pb | Zn | Ma | Ag | Cd | Ni | Co | Min | Fe | 81 | ٧ | U | W | Au | As | Hg | Sn | Sb B | a | E spec | Activation
Neutron | DCP | test | | | - | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn | Fe | Bi | ٧ | U | W. I | Au | As | Hg . | Sn | Sb B | 8 | E spec |
Activation | OCP | test | | | | | | Cu | Pb | Zn | Mo | Ap | Cd | Ni | Co | Ma | Fe | 84 | ¥. | U | W | Au | As | Hg | Sn | Sb B | a | E spec | Activation | OCP | test | | | | | | Cu | Ph | 70 | Mo | An | Cal | 831 | 0 | | | | | | | | 8.00 | Ha | Sn | Sb. B | 2 | FISHER | Activation | DCP | test | | | | | | 20 | - | 10,11 | 100 | 1 123 | 20 | 191 | GO. | MILL | -6 | Ði | A | U | W. I | Att | 013 | 1.00 | - | | | - alien | | | | | | | | | Cu | Ph | Zn | Min | Ag | Cd | Ni | Co | Mn | Fe | Bi
Bi | V. | U | W | Au | As | Hg | Sn | Sh B | 8 | E spec | Neutron
Activation | DCP | ore
test | | | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Mg Sn Sb Ba E spec Neutron Activation DCP test | DO NOT | ASSAY GEOCHEMICAL | | Pb | ass | och | | | | | | Fe | Bi
Bi | v
vel) | U | W 1 | Au | As | Hg
Hg | Sn
Sn | Sh B | los | E spec | Activation Neutron Activation [prepar | ncp | test | samp | |) [| DO NOT | | | Pb | ass | och | | | | | | Fe Fe | Bi
Bi | v
vel) | U | w 1 | Au | As | Hg
Hg | Sn
Sn | Sh B | los | E spec | Activation Neutron Activation [prepar | ncp | test | samp | | OMM | DISCARE RETURN STORE 6 | ASSAY GEOCHEMICAL | OVER | RLIM | ass | och | em | ical | I (p | pm | , tra | | | | SAM | | Mu Au meti | | TIOM | N D R S | ISCA
ETUF
TORE | RD
RN | ed Pu AFTER COD AF | Activation Neutron Activation [prepar | pared OMPLETE IS COMPI | ore test } | | | DMI COM | DISCARE RETURN STORE 6 | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | OVER | RLIM | ass | och | em | s | I (p | PLE | , tra | : INI | DIC | ATE | | MPLE | | POSI | TION | D R S S FOR | ISCA
ETUF
TORE | RD
RN | ed Pu AFTER COD AF | Activation Neutron Activation The preparation of t | pared OMPLETE IS COMPI | ore test } | | | OMI | DISCARD
RETURN
STORE 6 | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | MPLE | RLIM | ass
geo
MITS
ETE | 60 E | DAY | RE | I (p | PLE | ASE INV | : INI | DIC | ATE | | MPLE | ES T | POSI | TION ST | DI RI S FORA | ISCA
ETUR
TORI
AGE | RD
RN
E 1 | PU AFTER COD AF YEAR-FARGE V | Activation Neutron Activation The preparation of t | pared OMPLETE IS COMPI | test ore test } | /EAR | | OMI COMI | DISCARD
RETURN
STORE 6
RAGE CH | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS OD DAYS-DISCARD HARGE WILL BE ASSESS | MPLE | RLIM | ass
geo
MITS
ETE | 60 E | DAY | 'S RE | I (p | PLE | ASE. | : INI | DIC | ATE | | MPLE | ES T | O Bi | TION ST | D R S S FOR | ISCA
ETUF
TORE
AGE | RD
RN
E 1
CH | ed Pu AFTER COD AF YEAR-FARGE V | Activation Neutron Activation Jerepai Unpre | pared OMPLETE IS COMP | test ore test } LETE TER 1 \ | /EAR | | OMI F | DISCARE RETURN STORE 6 RAGE CH | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | OVER | RLIM | ass
geo
MITS
ETE | 60 E | DAY | rical RE | I (p | PLE | ASE | : INI | DIC | ATE | | MPLE | ES T | O Bi | TION ST | DI RI S' FORA | ISCA
ETUF
TORE
AGE | RD
RN
E 1
CH | ed Pu AFTER COD AF YEAR-FARGE V | Activation Neutron Activation Jerepai Unpre | pared OMPLETE IS COMPI | lest ore test | 'EAR | | OMI COMMI | DISCARE RETURN STORE 6 RAGE CH | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS OD DAYS-DISCARD HARGE WILL BE ASSESS | OVER | RLIM | ass
geo
MITS
ETE | 60 E | DAY | rical RE | I (p | PLE | ASE | : INI | DIC | ATE | | MPLE | ES T
Re:
Inv
Pul
Re: | O Bi | TION ST | D R S FOR | ISCA
ETUR
TORE
AGE | RD
RN
E 1
CH | PU AFTER COD AF YEAR-FARGE V | Activation Neutron Activation [] { prepair unprepair unprepair prepair unprepair unpr | pared OMPLETE IS COMPI | lest ore test | 'EAR | | OMI COMI | DISCARE RETURN STORE 6 RAGE CH Results _ nvoices Pulps Rejects _ | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | OVER | RLIM | ass
geo
MITS
ETE | 60 E | DAY | rical RE | I (p | PLE | ASE INV | : INI | DIC | ATE | | MPLE | ES T
Re:
Inv
Pul
Re: | O Bisults | TIOM ST | DI RI S S FORM | IISCA
ETUF
TORE
AGE
TO: | RD
RN
E 1
CH | PU AFTER COD AF YEAR-FARGE V | Activation Neutron Activation The prepare and | pared OMPLETE IS COMPI | lest ore test } LETE TER 1 \ | ZEAR | | OMI | DISCARE RETURN STORE 6 RAGE CH Results _ nvoices Pulps Rejects _ Invoice _ | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | OVER | RLIM | ass
geo
MITS
ETE | 60 E | DAY | RE | I (p | PLE | ASE INV | : INI | DIC | ATE | | MPLE | ES T
Re:
Inv
Pul
Re: | O BI sults oice: | TIOM ST | DI RI S S FORA | ISCA
ETUF
TORE
AGE
TO: | RDRN E 1 CH | PU AFTER COD AF YEAR-FARGE V | Activation Neutron Activation [] { prepair unprepair unprepair prepair unprepair unpr | pared OMPLETE IS COMPI | lest ore test } LETE TER 1) | /EAR | | | | - 10 | | - | | 0 | 2 | - | | SA | MI | L | = 5 | HI | PN | /IEI | NI. | NC | וונ | CE | | | | | | | | | |---------|---|----------------------|------|------|------|-----|-----|-----|------|------|------|-------|------|------|-----|-----------|-----|------|-------|------|------|------|-----|--------|----------------------------|---------|-------------|-----------------| | | Date S | hipped 12- | -1 | 1 | - | 0 | 2 | 5 | | | | | | | | | | | | | | | | | Collect | - | | | | | # Parcels in Shipment TOTAL NUMBER OF SAMPLES GEOLOGIST'S NAME PHONE NUMBER PROJECT NAME OR NUMBER amples # Sample Numbers ELEMENTS TO BE ANALYZED ANALYZED Neutron Ore | GEOLOGIST'S NAMEPHONE NUMBERPROJECT NAME OR NUMBER amples # Sample Numbers (Series) Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test | Samples | amples # Sample Numbers (Series) Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test | Туре | 12 88 525 Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F An As Hg Sn Sb Ba E spec Activation DCP Test 10 10 10 10 10 10 10 10 10 10 10 10 10 | Leg | 100.9 | 104- 73 | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Ma | Fe | Bi | V | U | W | F | én. | As | Hg | Sil | Sb | Ba | E spec | | DCP | | | | | | 105-1090 | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn- | Fe | Bi | ٧ | U | W | F | An | As: | Hig | Sn | Sb | Ba | E spec | | DCP | | | | | | 1140-1145 | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Min | Fe | Bi | V | IJ | W | F | Au | As | Hg | Sn | Sb | Ва | E spec | Activation | DCP | test | | | | | | Ciu | Pb | Zn | Mo | Ag- | Cd | NE | Co. | Mn | Fe | Bi | V | U | W | F | Αμ | As | Hg | \$n | Sh | Ba | E spec | Neutron
Activation | DCP | ore
lest | | | | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F An As Hg Sn Sb Ba E spec Neutron Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Neutron Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Neutron Activation DCP test | Cu Pb Zn Wo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP fest Cu Pb Zn Mo Ag Cd Ni Co Mn Fa Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP fest | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe 8i V U W F Au As Hg Sn St Ba E spet Activation DCP test | Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Activation DCP test Cu Pb Zn Mo Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba E spec Neutron Activation DCP test | | | | | | | | | | | | | | | 1 11 10 7 | | | | | | | | | | | | | | | Cu Pt Zn Mo Ag Cd NI Co Mn Fe Bi V U W F Au As Hg Sn St Ba E spec Activation DCP test | - | Cu Pa Zn Ma Ag Cd Ni Co Mn Fe Bi V U W F Au As Hg Sn Sb Ba Espec Neutron Activation DCP test | - | | | Cu | Pb | iZn: | VIO | Ag. | Cd | Ni | Co | MAN. | FB | Bi | V | U | W | F | Bu | As | Hg | Sn | Sb | 88 | E spec | - Activation
Neutron | DCF | test | | | | | | Cu | Pb | Zn | Via | Ag | Cd | NI | Co | Mn | Fe | Bi | ٧ | U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Activation | DCP | test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI | Co | Mn | Fe | Bi | V | Ħ | W | F | Au | As | Hg | Sn | Sb | Ва | E spec | Activation
Neutron | DCP | test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI | Co | Mn | Fe | 81 | V. | U | W | F | Au | As | Hg | Sn | Sti | Ba | E spec | Activation | DCP | test | | | | | | Cu | Pb | Zn | Vio | Ag | Cd | NI | Co | Ma | Fe | Bi | V | U | W | F | Au | As | Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | ore
test | | | | | | CB | Ph | Zn | Mo | Ag | Cd | NI- | Co | Vin | Fe | Bi | V | U | w | F | Au | As | Hg | Sn | Str | Ba | E spec | Neutron
Activation | DCP | test | | | | Diagon | | A |] | ass | say | (% | , 0 | re ç | grad | de) | | | | | 1 | - | anth | nod | ic i | tho | on | clo | sed | ∫ prepar | ed | } | samples | | | riease | analyze by | | | ged | och | em | ica | (p | pm | , tr | ace | e le | vel) | | 1 | " | icti | 100 | 10, | LITE | CI | CIO | E | unprep | pared | , | Samples | | | DO NOT | ASSAY GEOCHEMICAL | OVE | RLII | MITS | S | | | | | | | | | | | | | | | | | | 1 | | | | | | CC | MMENTS | | | | | | | | | | | | | _ | | | | | | | | _ | | | | | | | | - | |
 | - | I | | | 74 | | | | | | | DIE | ACI | E IN | DIC | ATE | e A | MD | | DISP | ne | ITIO | M | | | | | 100 | | | | | | COARSE REJECTS | | | | | | | | PLC | HOI | E IIV | DIC | AIL | OF | AIVIT | LE | JIOI | 03 | 1110 | 14 | | | P | ULPS | | | | | | | AFTER ANALYSIS COM | IPLE | ETE | | | | | | | | | | | | | | | | |] [| DISC | ARI | AFTER | ANALYSIS CO | OMPLETE | | | | P | | COD AFTER ANALYSIS | CON | MPL | ETE | FTER ANALYSI | S COMPL | ETE | | | 07 | | O DAYS-DISCARD | r.D | ACT | CD | en | DAV | C | | | | | | | | | | | | | | | | | RETURN COD
WILL BE ASSE | SSED AF | TER 1 V | FAR | | 31 | UHAGE CI | HARGE WILL BE ASSESS | ED | AFI | cn | 00 | DAI | 3 | | | | | | | | | | | | 0 | 101 | inu | LUI | IAHUL | WILL DE AGOL | OOLD AI | Livi | LAIT | | | | - | | | | | | RE | SU | LTS | IN | VOI | CES | AN | D S | SAM | PLE | ST | 0 B | E SI | ENT | TO | | 1 | | | | | | | Results | Tim Ra | 120 | on | 1 | | | | | | | | | | | | | Res | udte | - | T | iv | n | In | Mon | | | | | | Invoices | | | | 1 | | | | | | J. | | | | | | | | | s_ | 13 | De | 7/ | im | Mino | | | | | | Pulps | | | | | | | | | | | | | | | | | Pul | ps_ | | _ | | - 1 | | - | | | - | | | Rejects. | | | | | | | -4 | | | | | - | | | | | Rej | ects | - | | | | | | | | | | | Résults | | | | | | | | | | | | | | | | | Res | sults | 5_ | | | | | | | 100 | 1 | | 0 | Rejects | | | | | | | | | | | | | | | | | Rej | ects | 5_ | | | | | | | | and the same of |